Jump to main content
Jump to site search

Issue 44, 2011
Previous Article Next Article

Arrhenius analysis of anisotropic surface self-diffusion on the prismatic facet of ice

Author affiliations

Abstract

We present an Arrhenius analysis of self-diffusion on the prismatic surface of ice calculated from molecular dynamics simulations. The six-site water model of Nada and van der Eerden was used in combination with a structure-based criterion for determining the number of liquid-like molecules in the quasi-liquid layer. Simulated temperatures range from 230 K–287 K, the latter being just below the melting temperature of the model, 289 K. Calculated surface diffusion coefficients agree with available experimental data to within quoted precision. Our results indicate a positive Arrhenius curvature, implying a change in the mechanism of self-diffusion from low to high temperature, with a concomitant increase in energy of activation from 29.1 kJ mol−1 at low temperature to 53.8 kJ mol−1 close to the melting point. In addition, we find that the surface self-diffusion is anisotropic at lower temperatures, transitioning to isotropic in the temperature range of 240–250 K. We also present a framework for self-diffusion in the quasi-liquid layer on ice that aims to explain these observations.

Graphical abstract: Arrhenius analysis of anisotropic surface self-diffusion on the prismatic facet of ice

Back to tab navigation

Publication details

The article was received on 08 Jul 2011, accepted on 26 Sep 2011 and first published on 13 Oct 2011


Article type: Paper
DOI: 10.1039/C1CP22238D
Citation: Phys. Chem. Chem. Phys., 2011,13, 19960-19969
  •   Request permissions

    Arrhenius analysis of anisotropic surface self-diffusion on the prismatic facet of ice

    I. Gladich, W. Pfalzgraff, O. Maršálek, P. Jungwirth, M. Roeselová and S. Neshyba, Phys. Chem. Chem. Phys., 2011, 13, 19960
    DOI: 10.1039/C1CP22238D

Search articles by author

Spotlight

Advertisements