Issue 40, 2011

Surface functionalization of electro-deposited nickel

Abstract

A new in situelectrochemical method of functionalizing an oxide-free Ni surface is demonstrated using octanethiol. Initial adsorption results in a multilayer molecular film, which blocks both the hydrogen evolution reaction (HER) and re-oxidation of the Ni by ambient oxygen. However, excess octanethiol can be removed by rinsing with ethanol, leaving behind a monolayer that continues to protect against re-oxidation but gives rise to an unexpected enhancement in the HER, with a greater enhancement for longer film formation times. The presence of an octanethiol monolayer on the surface was confirmed by spectroscopic observation of the CH2, CH3 and thiolate groups using infra red spectroscopy, while X-ray photo-electron spectroscopy demonstrated the effectiveness of the thiol layer as a barrier to surface oxidation. The electrochemically prepared octanethiol film impedes oxidation of the Ni in air more effectively than a film formed by immersion in a solution of octanethiol in ethanol.

Graphical abstract: Surface functionalization of electro-deposited nickel

Article information

Article type
Paper
Submitted
05 Jul 2011
Accepted
22 Aug 2011
First published
15 Sep 2011

Phys. Chem. Chem. Phys., 2011,13, 17987-17993

Surface functionalization of electro-deposited nickel

J. E. Sadler, D. S. Szumski, A. Kierzkowska, S. R. Catarelli, K. Stella, R. J. Nichols, M. H. Fonticelli, G. Benitez, B. Blum, R. C. Salvarezza and W. Schwarzacher, Phys. Chem. Chem. Phys., 2011, 13, 17987 DOI: 10.1039/C1CP22203A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements