Issue 40, 2011

Impact of tunneling on hydrogen-migration of the n-propylperoxy radical

Abstract

The kinetics of three unimolecular reactions of the n-propylperoxy radical were studied by canonical variational transition state theory and multidimensional small curvature tunneling (SCT). The reactions studied were 1,5 and 1,4 H-migration, and HO2 elimination. Benchmark calculations were carried out at the CCSD(T) level in order to determine which density functional to use for SCT calculations for each reaction. For 1,5 and 1,4 H-migration, and HO2 elimination, the M05-2X, B3LYP and B1B95 functionals, respectively, performed closest to the benchmark when coupled to the 6-311+G(2df,2p) basis set. The SCT tunneling corrections, κ(T), computed here were much larger than those calculated from the Wigner or zero-curvature tunneling treatments at low temperatures, but the asymmetric Eckart method works surprisingly well in these three reactions. Comparison of energy-dependent transmission coefficients, Γ(E), indicates that not only the magnitude, but also the sign, of the error in the Eckart approximation is a function of energy; therefore, the error introduced by using the Eckart approach depends strongly on the steady state energy distribution. These results may provide guidance for future studies of tunneling effects in reactions of other peroxy radicals.

Graphical abstract: Impact of tunneling on hydrogen-migration of the n-propylperoxy radical

Supplementary files

Article information

Article type
Paper
Submitted
25 May 2011
Accepted
11 Jul 2011
First published
11 Aug 2011

Phys. Chem. Chem. Phys., 2011,13, 17969-17977

Impact of tunneling on hydrogen-migration of the n-propylperoxy radical

F. Zhang and T. S. Dibble, Phys. Chem. Chem. Phys., 2011, 13, 17969 DOI: 10.1039/C1CP21691K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements