Issue 31, 2011

Structures and IR/UV spectra of neutral and ionic phenol–Arncluster isomers (n ≤ 4): competition between hydrogen bonding and stacking

Abstract

The structures, binding energies, and vibrational and electronic spectra of various isomers of neutral and ionic phenol–Arnclusters with n ≤ 4, PhOH(+)–Arn, are characterized by quantum chemical calculations. The properties in the neutral and ionic ground electronic states (S0, D0) are determined at the M06-2X/aug-cc-pVTZ level, whereas the S1 excited state of the neutral species is investigated at the CC2/aug-cc-pVDZ level. The Ar complexation shifts calculated for the S1 origin and the adiabatic ionisation potential, ΔS1 and ΔIP, sensitively depend on the Ar positions and thus the sequence of filling the first Ar solvation shell. The calculated shifts confirm empirical additivity rules for ΔS1 established recently from experimental spectra and enable thus a firm assignment of various S1 origins to their respective isomers. A similar additivity model is newly developed for ΔIP using the M06-2X data. The isomer assignment is further confirmed by Franck–Condon simulations of the intermolecular vibrational structure of the S1S0 transitions. In neutral PhOH–Arn, dispersion dominates the attraction and π-bonding is more stable than H-bonding. The solvation sequence of the most stable isomers is derived as (10), (11), (30), and (31) for n ≤ 4, where (km) denotes isomers with k and m Ar ligands binding above and below the aromatic plane, respectively. The π interaction is somewhat stronger in the S1 state due to enhanced dispersion forces. Similarly, the H-bond strength increases in S1 due to the enhanced acidity of the OH proton. In the PhOH+–Arn cations, H-bonds are significantly stronger than π-bonds due to additional induction forces. Consequently, one favourable solvation sequence is derived as (H00), (H10), (H20), and (H30) for n ≤ 4, where (Hkm) denotes isomers with one H-bound ligand and k and m π-bonded Ar ligands above and below the aromatic plane, respectively. Another low-energy solvation motif for n = 2 is denoted (11)H and involves nonlinear bifurcated H-bonding to both equivalent Ar atoms in a C2v structure in which the OH group points toward the midpoint of an Ar2 dimer in a T-shaped fashion. This dimer core can also be further solvated by π-bonded ligands leading to the solvation sequence (H00), (11)H, (21)H, and (22) for n ≤ 4. The implications of the ionisation-induced π → H switch in the preferred interaction motif on the isomerisation and fragmentation processes of PhOH(+)–Arn are discussed in the light of the new structural and energetic cluster parameters.

Graphical abstract: Structures and IR/UV spectra of neutral and ionic phenol–Arncluster isomers (n ≤ 4): competition between hydrogen bonding and stacking

Supplementary files

Article information

Article type
Paper
Submitted
08 Mar 2011
Accepted
19 Apr 2011
First published
19 May 2011

Phys. Chem. Chem. Phys., 2011,13, 13926-13941

Structures and IR/UV spectra of neutral and ionic phenol–Arncluster isomers (n ≤ 4): competition between hydrogen bonding and stacking

M. Schmies, A. Patzer, M. Fujii and O. Dopfer, Phys. Chem. Chem. Phys., 2011, 13, 13926 DOI: 10.1039/C1CP20676A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements