Issue 9, 2011

Highly sensitive and selective volatile organic compound gas sensors based on mesoporous nanocomposite monoliths

Abstract

We introduce the use of highly ordered mesoporous silica/metal oxide (HOM/MO) nanocomposite monoliths for volatile organic compound (VOC) gas sensor applications. Monoliths with various loadings of semiconducting metal oxides (SnO2, ZnO, NiO, CuO, and Fe2O3) were prepared through instant direct-templating method. The dependence of the doping elements and doping levels on the mesoporous structure of monoliths was investigated. The results indicate that the monoliths retained their ordered porous structure at up to 40% doping by SnO2. The high-resolution transmission electron microscopy and scanning transmission electron microscopy images revealed that the SnO2 nanocrystals were homogenously distributed in the matrix of the HOM monoliths up to 40% doping concentration. The gas-sensing properties of the HOM/SnO2 and HOM/ZnO monoliths to acetone, benzene, and ethanol were also investigated. Sensors based on the HOM/SnO2 nanocomposites showed highest sensitivity, selectivity, response rate, and response stability to acetone compared with the others. This finding provides interesting results on the large-scale synthesis of HOM/MO monoliths with the ability to control pore structure and opens a new strategy in the application of mesoporous nanocomposites for gas sensors. In addition, various HOM/MO nanocomposite monoliths are easily synthesized through this method. It expands the potential of HOM/MO nanocomposite monoliths to other applications, such as catalysis and adsorption.

Graphical abstract: Highly sensitive and selective volatile organic compound gas sensors based on mesoporous nanocomposite monoliths

Supplementary files

Article information

Article type
Paper
Submitted
08 Jun 2011
Accepted
29 Jul 2011
First published
18 Aug 2011

Anal. Methods, 2011,3, 1948-1956

Highly sensitive and selective volatile organic compound gas sensors based on mesoporous nanocomposite monoliths

N. D. Hoa and S. A. El-Safty, Anal. Methods, 2011, 3, 1948 DOI: 10.1039/C1AY05333G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements