Issue 1, 2011

Enzymatically modified peptide surfaces: towards general electrochemical sensor platform for protein kinase catalyzed phosphorylations

Abstract

We hereby present an electrochemical approach for monitoring the three protein kinases sarcoma-related kinase (Src), extracellular signal-regulated kinase 1 (Erk1), and cyclin A-dependent kinase 2 (CDK2/cyclin A). The electrochemical sensor is based on the ability of kinases to transfer a redox-labeled phosphoryl group to surface-bound peptides that are highly specific substrates for the particular protein kinase (EGIYDVP, EPLTPSG, and HHASPRK, respectively). The detection method relies on the use of 5′-γ-ferrocenoyl-ATP (Fc-ATP) as a co-substrate for peptide phosphorylation. The peptides themselves are attached to a Au substrate, which acts as the working electrode. In this process a Fc-phosphoryl group is transferred to the peptide and the presence of the redox active Fc group is detected electrochemically. All peptide films were fully characterized by cyclic voltammetry (CV), square wave voltammetry (SWV), and electrochemical impedance spectroscopy (EIS). Particular attention was given to the electron transfer rates, kET, in peptide films after Fc-phosphorylation which were found to be on the order of seconds. The slow ET kinetics is presumably a result of the negative charge on the phosphoryl group. Time-of-flight secondary ion mass spectrometry (TOF-SIMS) and X-ray photoelectron spectroscopy (XPS) experiments based on the peptide modified Au surfaces reveal significant ferrocene and phosphate group content introduced using the kinase-catalyzed phosphorylation reaction.

Graphical abstract: Enzymatically modified peptide surfaces: towards general electrochemical sensor platform for protein kinase catalyzed phosphorylations

Supplementary files

Article information

Article type
Paper
Submitted
24 Jun 2010
Accepted
11 Oct 2010
First published
02 Nov 2010

Analyst, 2011,136, 107-112

Enzymatically modified peptide surfaces: towards general electrochemical sensor platform for protein kinase catalyzed phosphorylations

S. Martić, M. Labib and H. Kraatz, Analyst, 2011, 136, 107 DOI: 10.1039/C0AN00438C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements