Issue 19, 2010

Subtle variations in polymer chemistry modulate substrate stiffness and fibronectin activity

Abstract

A family of polymer substrates which consists of a vinyl backbone chain with the side groups –COO(CH2)xCH3, with x = 0, 1, 3, 5 was prepared. Substrates with decreasing stiffness, characterised by the elastic modulus at 37 °C, and similar chemical groups were obtained. Firstly, we have investigated whether these minute variations in polymer chemistry lead to differences in fibronectin (FN) adsorption: the same FN density was obtained on every substrate (450 ng cm−2) but the supramolecular organisation of the protein at the material interface, as obtained with AFM, was different for x = 0 and the other surfaces (x = 1, 3, 5). Consequently, this allows one to use a set of substrates (x = 1, 3, 5) to investigate the effect of substrate stiffness on cell behavior as the unique physical parameter, i.e. after ruling out any influence of the length of the side group on protein conformation. Moreover, the importance of investigating the intermediate layer of proteins at the cell-material interface is stressed: the effect of x = 0 and x = 1 on cell behavior cannot be ascribed to the different stiffness of the substrate anymore, since the biological activity of the protein on the material surface was also different. Afterwards, initial cellular interaction was investigated using MC3T3-E1 osteoblasts-like cells and focusing on actin cytoskeleton development, focal adhesion formation and the ability of cells to reorganize the adsorbed FN layer on the different substrates. Image analysis was used to quantify the frequency distribution of the focal plaques, which revealed broader distributions on the stiffer substrates, with formation of larger focal plaques revealing that cells exert higher forces on stiffer substrates.

Graphical abstract: Subtle variations in polymer chemistry modulate substrate stiffness and fibronectin activity

Article information

Article type
Paper
Submitted
08 Mar 2010
Accepted
03 Jun 2010
First published
10 Aug 2010

Soft Matter, 2010,6, 4748-4755

Subtle variations in polymer chemistry modulate substrate stiffness and fibronectin activity

N. B. Guerra, C. González-García, V. Llopis, J. C. Rodríguez-Hernández, D. Moratal, P. Rico and M. Salmerón-Sánchez, Soft Matter, 2010, 6, 4748 DOI: 10.1039/C0SM00074D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements