Issue 19, 2010

Cell spreading as a hydrodynamic process

Abstract

Many cell types have the ability to move themselves by crawling on extra-cellular matrices. Although cell motility is governed by actin and myosin filament assembly, the pattern of the movement follows the physical properties of the network ensemble average. The first step of motility, cell spreading on matrix substrates, involves a transition from round cells in suspension to polarized cells on substrates. Here we show that the spreading dynamics on 2D surfaces can be described as a hydrodynamic process. In particular, we show that the transition from isotropic spreading at early time to anisotropic spreading is reminiscent of the fingering instability observed in many spreading fluids. During cell spreading, the main driving force is the polymerization of actin filaments that push the membrane forward. From the equilibrium between the membrane force and the cytoskeleton, we derive a first order expression of the polymerization stress that reproduces the observed behavior. Our model also allows an interpretation of the effects of pharmacological agents altering the polymerization of actin. In particular we describe the influence of Cytochalasin D on the nucleation of the fingering instability.

Graphical abstract: Cell spreading as a hydrodynamic process

Article information

Article type
Paper
Submitted
13 Apr 2010
Accepted
22 Jul 2010
First published
11 Aug 2010

Soft Matter, 2010,6, 4788-4799

Cell spreading as a hydrodynamic process

M. A. Fardin, O. M. Rossier, P. Rangamani, P. D. Avigan, N. C. Gauthier, W. Vonnegut, A. Mathur, J. Hone, R. Iyengar and M. P. Sheetz, Soft Matter, 2010, 6, 4788 DOI: 10.1039/C0SM00252F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements