Issue 4, 2010

Performance polymers from renewable monomers: high molecular weight poly(pentadecalactone) for fiber applications

Abstract

Enzymatic ring-opening polymerization was applied to synthesize high molecular weight polypentadecalactone (PPDL). The synthetic procedure was optimized on a small-scale and subsequently transferred to 30 g scale to yield sufficient material for fiber spinning. Molecular weights (Mw) of 143 000 g mol−1 were obtained. Mechanical and thermal properties of the non-oriented, high molecular weight PPDL were determined and are largely in agreement with the literature data. The high molecular weight PPDL was melt-processed into fibers, which were further elongated to about 9–10 times their original length. Analysis of the fibers revealed differences in crystal orientation as a function of the processing conditions. Preliminary fiber tensile measurements confirm a high strength of up to 0.74 GPa for the fiber with the highest crystal orientation.

Graphical abstract: Performance polymers from renewable monomers: high molecular weight poly(pentadecalactone) for fiber applications

Article information

Article type
Paper
Submitted
24 Nov 2009
Accepted
30 Dec 2009
First published
20 Jan 2010

Polym. Chem., 2010,1, 525-533

Performance polymers from renewable monomers: high molecular weight poly(pentadecalactone) for fiber applications

M. de Geus, I. van der Meulen, B. Goderis, K. van Hecke, M. Dorschu, H. van der Werff, C. E. Koning and A. Heise, Polym. Chem., 2010, 1, 525 DOI: 10.1039/B9PY00360F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements