Issue 6, 2010

The sodium/galactosesymporter crystal structure is a dynamic, not so occluded state

Abstract

The recent elucidation of the sodium/galactose symporter structure from the Vibrio parahaemolyticus bacterium, vSGLT, has revealed a similarity in the core architecture with transporters from different gene families, including the leucine transporter (LeuT). Even though several transporters sharing this core have been structurally determined over the past few years, vSGLT is the only one crystallized in the substrate-bound inward-facing conformation so far. In this study, we report the first insight into the dynamics and coordination of the galactose (Gal) and proposed Na+ ion in vSGLT using a series of molecular dynamics simulations with a total time of about 0.1 μs. Our study reveals new residues, not observed in the crystal structure, which closely interact with the Na+ ion or the substrate for extended times, and shows that in the crystallized conformation, a Na+ ion placed at the site equivalent to Na2 in LeuT can escape into the intracellular (IC) space in the absence of external forces. We have identified the highly conserved Asp189 as a likely binding residue on the pathway of Na+ into the IC cavity. The release of Gal, on the other hand, requires the rotation of the side chain of the inner hydrophobic gate, Tyr263, without a significant change in vSGLT backbone conformation. Our simulations further show that the crystal structure represents but one accessible binding pose of Gal and Na+ among an ensemble of microstates, and that the Gal undergoes versatile alternate interactions at the binding pocket.

Graphical abstract: The sodium/galactose symporter crystal structure is a dynamic, not so occluded state

Supplementary files

Article information

Article type
Paper
Submitted
05 Jan 2010
Accepted
12 Feb 2010
First published
31 Mar 2010

Mol. BioSyst., 2010,6, 1040-1046

The sodium/galactose symporter crystal structure is a dynamic, not so occluded state

E. Zomot and I. Bahar, Mol. BioSyst., 2010, 6, 1040 DOI: 10.1039/B927492H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements