Jump to main content
Jump to site search

Issue 19, 2010
Previous Article Next Article

Deformability based cell margination—A simple microfluidic design for malaria-infected erythrocyte separation

Author affiliations

Abstract

In blood vessels with luminal diameter less than 300μm, red blood cells (RBCs) which are smaller in size and more deformable than leukocytes, migrate to the axial centre of the vessel due to flow velocity gradient within the vessels. This phenomenon displaces the leukocytes to the vessel wall and is aptly termed as margination. Here, we demonstrate using microfluidics that stiffer malaria-infected RBCs (iRBCs) behave similar to leukocytes and undergo margination towards the sidewalls. This provides better understanding of the hemodynamic effects of iRBCs in microcirculation and its contribution to pathophysiological outcome relating to cytoadherence to endothelium. In this work, cell margination is mimicked for the separation of iRBCs from whole blood based on their reduced deformability. The malaria infected sample was tested in a simple long straight channel microfluidic device fabricated in polydimethylsiloxane. In this microchannel, cell margination was directed along the channel width with the iRBCs aligning near each sidewall and then subsequently removed using a 3-outlet system, thus achieving separation. Tests were conducted using ring stage and late trophozoite/schizont stage iRBCs. Device performance was quantified by analyzing the distribution of these iRBCs across the microchannel width at the outlet and also conducting flow cytometry analysis. Results indicate recovery of ∼75% for early stage iRBCs and >90% for late stage iRBCs at the side outlets. The simple and passive system operation makes this technique ideal for on-site iRBCs enrichment in resource-limited settings, and can be applied to other blood cell diseases, e.g. sickle cell anemia and leukemia, characterized by changes in cell stiffness.

Graphical abstract: Deformability based cell margination—A simple microfluidic design for malaria-infected erythrocyte separation

Back to tab navigation
Please wait while Download options loads

Supplementary files

Publication details

The article was received on 04 Mar 2010, accepted on 01 Jun 2010 and first published on 05 Aug 2010


Article type: Paper
DOI: 10.1039/C003873C
Citation: Lab Chip, 2010,10, 2605-2613
  •   Request permissions

    Deformability based cell margination—A simple microfluidic design for malaria-infected erythrocyte separation

    H. W. Hou, A. A. S. Bhagat, A. G. Lin Chong, P. Mao, K. S. Wei Tan, J. Han and C. T. Lim, Lab Chip, 2010, 10, 2605
    DOI: 10.1039/C003873C

Search articles by author