Issue 5, 2010

Study on the kinetics of homogeneous enzyme reactions in a micro/nanofluidics device

Abstract

In this paper, a micro/nanofluidic preconcentration device integrated with an electrochemical detector has been used to study the enrichment of enzymes and homogeneous enzyme reaction kinetics. The enzymes are first concentrated in front of a nanochannel via an exclusion-enrichment effect (EEE) mechanism of the nanochannel integrated in a microfluidics device. If a substrate is electrokinetically transported to the concentrated enzymes, homogeneous enzymatic reaction occurs. The enzymatic reaction product can penetrate through the nanochannel to be detected electrochemically. In this device, the enriched enzymes can be well retained and repeatedly used, thus, the enzymatic reaction occurs in a continuous-flow mode. For demonstration, Glucose oxidase (GOx) was chosen as the model enzyme to study the influence of enzyme concentration on its reaction kinetics. The different concentration of GOx in front of the nanochannel was simply achieved by using different enrichment time. When substrate glucose was introduced electrokinetically, a rapid electrochemical steady-state response could be obtained. It was found that the electrochemical response to a constant glucose concentration increased with the increase of enzyme enrichment time, which is expected for homogeneous enzymatic reactions. Under proper conditions, the electrochemical responds linearly to the glucose concentration ranging from 0 to 15 mM, and the Michaelis constants (Km) are relatively low, which indicates a more efficient complex formation between enzyme and substrate. These results suggest that the present micro/nanofluidics device is promising for the study of enzymatic reaction kinetics and other bioassays such as cell assays, drug discovery, and clinical diagnosis.

Graphical abstract: Study on the kinetics of homogeneous enzyme reactions in a micro/nanofluidics device

Supplementary files

Article information

Article type
Paper
Submitted
04 Aug 2009
Accepted
06 Nov 2009
First published
16 Dec 2009

Lab Chip, 2010,10, 639-646

Study on the kinetics of homogeneous enzyme reactions in a micro/nanofluidics device

C. Wang, S. Li, Z. Wu, J. Xu, H. Chen and X. Xia, Lab Chip, 2010, 10, 639 DOI: 10.1039/B915762J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements