Jump to main content
Jump to site search

Issue 38, 2010
Previous Article Next Article

Lithium storage in a metal organic framework with diamondoid topology – a case study on metal formates

Author affiliations

Abstract

In this manuscript, a systematic investigation on the electrochemical performance of as-synthesized metal organic framework (MOF) Zn3(HCOO)6 with diamondoid structure for the Li storage using conversion reaction at low potential is described. Nearly an invariable capacity of 560 mAh g−1 (9.6 moles of Li) was obtained up to 60 cycles at 60 mA g−1 within the voltage range 0.005–3.0 V. The regeneration of the MOF during the cycling and the improved cyclability are evidenced from the electrochemical results along with ex situ PXRD, FTIR and TEM studies. The electrochemical cycling suggests that metal formate frameworks react reversibly with Li through conversion reaction. The matrix involved during the cycling was lithium formate rather than the typical Li2O and this is well supported by the ex situ FTIR results. The thermodynamic feasibility to transform the lithium formate to transition metal formate is more highly favored than from Li2O and this is further confirmed by reacting lithium formate with respective transition metal nitrates. The reversible formation or regeneration of FOR1 MOF plays a vital role in attaining the superior Li storage performance. Ultimately, the observation of improved storage performance and good cycling stability of Co3(HCOO)6 and Zn1.5Co1.5(HCOO)6, and the overall simple and eco-friendly synthesis method demonstrates that robust, thermally stable MOFs are a prospective class of electrode materials for Li ion batteries (LIBs).

Graphical abstract: Lithium storage in a metal organic framework with diamondoid topology – a case study on metal formates

Back to tab navigation

Supplementary files

Publication details

The article was received on 31 May 2010, accepted on 13 Jul 2010 and first published on 23 Aug 2010


Article type: Paper
DOI: 10.1039/C0JM01671C
Citation: J. Mater. Chem., 2010,20, 8329-8335
  •   Request permissions

    Lithium storage in a metal organic framework with diamondoid topology – a case study on metal formates

    K. Saravanan, M. Nagarathinam, P. Balaya and J. J. Vittal, J. Mater. Chem., 2010, 20, 8329
    DOI: 10.1039/C0JM01671C

Search articles by author

Spotlight

Advertisements