Jump to main content
Jump to site search

Issue 37, 2010
Previous Article Next Article

A versatile fabrication of upconversion nanophosphors with functional-surface tunable ligands

Author affiliations

Abstract

Rare earth upconversion nanophosphors (UCNPs) have been recognized as a promising new class of biological luminescent labels for fluorescence imaging. However, little work has been reported on the successful application of UCNPs in fluorescence imaging so far. The major problem with UCNPs arises from the difficulties in obtaining water-soluble UCNPs bearing appropriate surface functional groups. To solve this problem, herein we report a general procedure for the one-pot preparation of surface-functionalized UCNPs by a modified polyol route assisted by difunctional ligands containing a carboxyl group, such as 11-aminoundecanoic acid (ADA), poly(ethylene glycol)bis(carboxymethyl)ether (PEGBA) and folic acid (FA). The success of this one-pot method was confirmed by FT-IR and 1H NMR spectroscopy. Due to the amino and carboxyl groups pointing outward, both amino-functionlized UCNPs (UCNPs-ADA) and carboxyl-functionlized UCNPs (UCNPs-PEGBA) are particularly suitable for coupling reactions with biological molecules and are potential candidates for bioimaging labels. By means of laser scanning upconversion luminescence microscopy, FA-functionlized UCNPs (UCNPs-FA) have been demonstrated to be effective in targeting folate-receptors overexpressing cancer cell lines. It is possible to design other surface-functionalized UCNPs by changing other bifunctional ligands with a carboxyl group. This strategy is general and facile for frabricating surface-functionalized UCNPs to potentially be used as bioimaging agents.

Graphical abstract: A versatile fabrication of upconversion nanophosphors with functional-surface tunable ligands

Back to tab navigation

Supplementary files

Publication details

The article was received on 14 Apr 2010, accepted on 27 Jun 2010 and first published on 16 Aug 2010


Article type: Paper
DOI: 10.1039/C0JM01041C
Citation: J. Mater. Chem., 2010,20, 8078-8085
  •   Request permissions

    A versatile fabrication of upconversion nanophosphors with functional-surface tunable ligands

    J. Zhou, L. Yao, C. Li and F. Li, J. Mater. Chem., 2010, 20, 8078
    DOI: 10.1039/C0JM01041C

Search articles by author

Spotlight

Advertisements