Issue 40, 2010

Design principles for polymers as substratum for adherent cells

Abstract

The next generation of biomaterials for regenerative therapies requires the development of substances, which are able to influence and activate specific phenotype characteristics of cells and tissues. Research towards this aim has resulted in an increasing number of reports about material induced cellular functions and cell-cell interactions. In this context, polymeric materials, which are not intended to degrade can provide helpful in-vitro tools to gain more detailed knowledge about the cell-substrate crosstalk and the resulting cell specific effects. This review aims to consolidate current strategies to induce specific effects on adhesive cells which are related to defined characteristics of two-dimensional systems starting with the molecular dimension, following up with the nanostructure and ending with the surface microstructure. This includes approaches to induce direct or indirect biological responses towards cells by systematic changes in material properties such as hydrophilicity or elasticity. These properties are explained as a function of chemical composition such as the type and ratio of copolymers used for linear polymers, or the geometric arrangement of branching points for network polymer architectures. Surface topographical features are identified to strongly influence cell-substrate interactions and techniques are described to control the surface patterning of polymeric materials on the nano- or microscale. Finally we offer a strategy on how to develop complex and multifunctional materials, which might fulfill the requirements of cell and tissue adapted biomaterials for regenerative therapies.

Graphical abstract: Design principles for polymers as substratum for adherent cells

Article information

Article type
Feature Article
Submitted
09 Apr 2010
Accepted
30 Jul 2010
First published
24 Aug 2010

J. Mater. Chem., 2010,20, 8789-8802

Design principles for polymers as substratum for adherent cells

N. Scharnagl, S. Lee, B. Hiebl, A. Sisson and A. Lendlein, J. Mater. Chem., 2010, 20, 8789 DOI: 10.1039/C0JM00997K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements