Jump to main content
Jump to site search

Issue 21, 2010
Previous Article Next Article

Enhanced charge collection efficiency by thin-TiO2-film deposition on FTO-coated ITO conductive oxide in dye-sensitized solar cells

Author affiliations

Abstract

We have investigated effect of thin TiO2 layers deposited on an indium tin oxide (ITO)/fluorine-doped tin oxide (FTO) double-layered transparent conductive oxide on the performance of dye-sensitized solar cell. FTO is deposited on an ITO-coated glass, followed by TiO2 deposition using a radio frequency magnetron sputtering technique. The thicknesses of the sputtered-TiO2 layers are varied from 10 nm to 20 nm, while the ITO and FTO are fixed to be 150 nm and 70 nm, respectively. Atomic force microscopy (AFM) shows that the surface roughness is similar but the surface morphology is altered by thin TiO2 layer deposition. The sheet resistance of the ITO/FTO conductive glass is hardly changed by thin TiO2 layer deposition. Photovoltaic performance is significantly enhanced after introduction of thin TiO2 underlayer. The 15 nm thick TiO2 underlayer leads to the increases of photocurrent density from 9 mA cm−2 to 10.3 mA cm−2 and fill factor from 0.715 to 0.747, as a result, the overall conversion efficiency is improved from 5.28% to 6.37%, corresponding to 20.6% increase. Photovoltage, however, remains almost unchanged. Photocurrent is improved over the entire wavelength. The increased transmittance at wavelength ranging from 300 to 600 nm contributes in part to increase in photocurrent. Improvement of charge collection efficiency from ∼90% to ∼97% is also attributed to the increased photocurrent, where the increased transport rate is responsible for the improved charge collection, indicating that the thin TiO2 underlayer has influence on opto-electronic property in the dye-adsorbed bulk TiO2 film.

Graphical abstract: Enhanced charge collection efficiency by thin-TiO2-film deposition on FTO-coated ITO conductive oxide in dye-sensitized solar cells

Back to tab navigation
Please wait while Download options loads

Publication details

The article was received on 14 Dec 2009, accepted on 09 Mar 2010 and first published on 23 Apr 2010


Article type: Paper
DOI: 10.1039/B926145A
Citation: J. Mater. Chem., 2010,20, 4392-4398
  •   Request permissions

    Enhanced charge collection efficiency by thin-TiO2-film deposition on FTO-coated ITO conductive oxide in dye-sensitized solar cells

    B. Yoo, K. Kim, D. Lee, M. J. Ko, H. Lee, Y. H. Kim, W. M. Kim and N. Park, J. Mater. Chem., 2010, 20, 4392
    DOI: 10.1039/B926145A

Search articles by author