Jump to main content
Jump to site search

Issue 10, 2010
Previous Article Next Article

Control of crystal polymorph in microfluidics using molluscan 28 kDa Ca2+-binding protein

Author affiliations

Abstract

Biominerals produced by biological systems in physiologically relevant environments possess extraordinary properties that are often difficult to replicate under laboratory conditions. Understanding the mechanism that underlies the process of biomineralisation can lead to novel strategies in the development of advanced materials. Using microfluidics, we have demonstrated for the first time, that an extrapallial (EP) 28 kDa protein, located in the extrapallial compartment between mantle and shell of Mytilus edulis, can influence, at both micro- and nanoscopic levels, the morphology, structure and polymorph that is laid down in the shell ultrastructure. Crucially, this influence is predominantly dependent on the existence of an EP protein concentration gradient and its consecutive interaction with Ca2+ ions. Novel lemon-shaped hollow vaterite structures with a clearly defined nanogranular assembly occur only where particular EP protein and Ca2+ gradients co-exist. Computational fluid dynamics enabled the progress of the reaction to be mapped and the influence of concentration gradients across the device to be calculated. Importantly, these findings could not have been observed using conventional bulk mixing methods. Our findings not only provide direct experimental evidence of the potential influence of EP proteins in crystal formation, but also offer a new biomimetic strategy to develop functional biomaterials for applications such as encapsulation and drug delivery.

Graphical abstract: Control of crystal polymorph in microfluidics using molluscan 28 kDa Ca2+-binding protein

Back to tab navigation

Supplementary files

Publication details

The article was received on 15 Feb 2010, accepted on 23 Jul 2010 and first published on 27 Aug 2010


Article type: Paper
DOI: 10.1039/C0IB00007H
Citation: Integr. Biol., 2010,2, 528-535
  •   Request permissions

    Control of crystal polymorph in microfluidics using molluscan 28 kDa Ca2+-binding protein

    B. Ji, M. Cusack, A. Freer, P. S. Dobson, N. Gadegaard and H. Yin, Integr. Biol., 2010, 2, 528
    DOI: 10.1039/C0IB00007H

Search articles by author

Spotlight

Advertisements