Jump to main content
Jump to site search
PLANNED MAINTENANCE Close the message box

Scheduled maintenance upgrade on Thursday 4th of May 2017 from 8.00am to 9.00am (BST).

During this time our websites will be offline temporarily. If you have any questions please use the feedback button on this page. We apologise for any inconvenience this might cause and thank you for your patience.


Volume 145, 2010
Previous Article Next Article

Entropic trends in aqueous solutions of the common functional groups

Author affiliations

Abstract

While much is known about the properties of small organic molecules in aqueous solution, one quantity that has eluded a detailed understanding is their entropy. Different functional groups interact in diverse ways with water molecules and thereby influence a molecule's solubility, conformation and association behaviour. Experiment can access the total entropy of solvation but struggles to give a more detailed break-down of the entropic components. Established theoretical and computational methods based on perturbation give insight into changes in solute–solvent and solventsolvent entropy components, but these multibody terms that represent changes are not intuitive to interpret and can be expensive or difficult to evaluate. Partition-function methods, on the other hand, have the capability of determining the entropy of every degree of freedom of every molecule in the system. They do this by determining effective potentials for each degree of freedom, and evaluating the associated entropy component from the partition function of the effective potential. The obstacle to such an approach has been finding a reliable way to define and derive these effective potentials. This we have overcome in a two-fold manner: firstly, the shape of the effective potential for each molecule, which relates to vibrational and librational motion of the confined molecule, is derived from the magnitudes of the forces and torques measured in a molecular dynamics simulation of the solution; secondly, the number of minima for each effective potential, which relates to the number of positions and orientations in solution, is derived from the translational and rotational discretisations by the surrounding solvent molecules. This method has been shown to successfully reproduce the entropy of liquid water and to examine the entropy loss of water around noble-gas solutes. In this work, we extend the approach to reveal the nature of water's entropy around small organic molecules with a range of functional groups. The vibrational and librational entropies of solutes and water decrease for solutes with more polar atoms, as would be expected. The number of solute orientations depends on solute size, whereas the number of water orientations depends on the number of polar atoms in the solute. Solutes are classified according to how their donors and acceptors affect water's orientational entropy. Agreement of the calculated standard Gibbs free energy of solvation with experiment is very good with a mean-unsigned error of 2.5 kJ mol−1, but the entropies and enthalpies, not being negative enough, could be improved with better force fields.

Back to tab navigation
Please wait while Download options loads

Publication details

The article was received on 15 Apr 2009, accepted on 19 Jun 2009 and first published on 24 Oct 2009


Article type: Paper
DOI: 10.1039/B907383C
Citation: Faraday Discuss., 2010,145, 467-485
  •   Request permissions

    Entropic trends in aqueous solutions of the common functional groups

    S. J. Irudayam, R. D. Plumb and R. H. Henchman, Faraday Discuss., 2010, 145, 467
    DOI: 10.1039/B907383C

Search articles by author