Issue 13, 2009

A model liquid crystalline system based on rodlike viruses with variable chirality and persistence length

Abstract

We compare the phase behavior of a mutant filamentous virus, fd Y21M, to that of a conventional fd wild-type (wt). We find significantly different macroscopic phase behavior despite the only microscopic difference between the two viruses being in a single amino acid of the major coat protein pVIII. Compared to fd wt, the location of the isotropic–cholesteric phase transition for fd Y21M shifts to lower densities. This is attributable to a significant difference in the flexibility of the two viruses. The persistence length of fd wt is 2.8 ± 0.7 µm, whereas the persistence length of fd Y21M is 9.9 ± 1.6 µm. The large persistence length of fd Y21M makes it an essentially rigid rod, thus allowing for the first time a quantitative test of the Onsager theory for the isotropic–nematic phase transition. Even more striking, is the difference in the chiral phase behavior of the two viruses. Both viruses form cholesteric phases, with the fd wt forming a left-handed cholesteric helix, and the fd Y21M forming a right-handed one. At a given density, the magnitude of the cholesteric pitch between the two systems is different by fivefold. Using mixtures of the two viruses, we create a liquid crystalline system with a tunable control over its macroscopic chirality.

Graphical abstract: A model liquid crystalline system based on rodlike viruses with variable chirality and persistence length

Supplementary files

Article information

Article type
Paper
Submitted
16 Dec 2008
Accepted
25 Mar 2009
First published
30 Apr 2009

Soft Matter, 2009,5, 2563-2570

A model liquid crystalline system based on rodlike viruses with variable chirality and persistence length

E. Barry, D. Beller and Z. Dogic, Soft Matter, 2009, 5, 2563 DOI: 10.1039/B822478A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements