Issue 6, 2009

Photosensitizing properties of chlorins in solution and in membrane-mimicking systems

Abstract

The photosensitizing properties of three chlorins, meso-tetra(3-hydroxyphenyl)chlorin (m-THPC), chlorin e6 (Ce6) and meso-tetraphenylchlorin substituted by two adjacent sulfonated groups (TPCS2a) are compared in solution and when incorporated in dioleoyl-sn-phosphatidylcholine (DOPC) liposomes. In solution, the three chlorins possess a similar efficacy to generate singlet oxygen (quantum yield ∼0.65). The formation of conjugated dienes was used to determine their ability to induce the peroxidation of methyl linoleate as a target of singlet oxygen. In ethanol solution, the apparent quantum yield for this process is the same for the three chlorins and its value agrees with that expected from the known rates for the decay of singlet oxygen and its reaction with methyl linoleate. When incorporated in liposomes, the order of efficacy is m-THPC > TPCS2a > Ce6. This order is tentatively assigned to the relative embedment of the photosensitizer within the lipidic bilayer, TPCS2a and Ce6 being anchored by their negative chains nearer to the waterlipid interface. The photoinduced permeation of the lipidic bilayer by these chlorins was investigated by measuring the release of carboxyfluorescein entrapped into DOPC liposomes. The charged chlorins, in particular TPCS2a, are the most efficient, a result discussed in relation with the technology of photochemical internalization, PCI.

Graphical abstract: Photosensitizing properties of chlorins in solution and in membrane-mimicking systems

Article information

Article type
Paper
Submitted
11 Dec 2008
Accepted
12 Mar 2009
First published
30 Mar 2009

Photochem. Photobiol. Sci., 2009,8, 778-787

Photosensitizing properties of chlorins in solution and in membrane-mimicking systems

H. Mojzisova, S. Bonneau, P. Maillard, K. Berg and D. Brault, Photochem. Photobiol. Sci., 2009, 8, 778 DOI: 10.1039/B822269J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements