Jump to main content
Jump to site search

Issue 19, 2009
Previous Article Next Article

An acoustically-driven biochip – impact of flow on the cell-association of targeted drug carriers

Author affiliations

Abstract

The interaction of targeted drug carriers with epithelial and endothelial barriers in vivo is largely determined by the dynamics of the body fluids. To simulate these conditions in binding assays, a fully biocompatible in vitro model was developed which can accurately mimic a wide range of physiological flow conditions on a thumbnail-format cell-chip. This acoustically-driven microfluidic system was used to study the interaction characteristics of protein-coated particles with cells. Poly(D,L-lactide-co-glycolide) (PLGA) microparticles (2.9 ± 1 µm) were conjugated with wheat germ agglutinin (WGA-MP, cytoadhesive protein) or bovine serum albumin (BSA-MP, non-specific protein) and their binding to epithelial cell monolayers was investigated under stationary and flow conditions. While mean numbers of 1500 ± 307 mm−2 WGA-MP and 94 ± 64 mm−2 BSA-MP respectively were detected to be cell-bound in the stationary setup, incubation at increasing flow velocities increasingly antagonized the attachment of both types of surface-modified particles. However, while binding of BSA-MP was totally inhibited by flow, grafting with WGA resulted in a pronounced anchoring effect. This was indicated by a mean number of 747 ± 241 mm−2 and 104 ± 44 mm−2 attached particles at shear rates of 0.2 s−1 and 1 s−1 respectively. Due to the compactness of the fluidic chip which favours parallelization, this setup represents a highly promising approach towards a screening platform for the performance of drug delivery vehicles under physiological flow conditions. In this regard, the flow-chip is expected to provide substantial information for the successful design and development of targeted micro- and nanoparticulate drug carrier systems.

Graphical abstract: An acoustically-driven biochip – impact of flow on the cell-association of targeted drug carriers

Back to tab navigation

Supplementary files

Publication details

The article was received on 25 Mar 2009, accepted on 15 Jun 2009 and first published on 06 Jul 2009


Article type: Paper
DOI: 10.1039/B906006E
Citation: Lab Chip, 2009,9, 2782-2788
  •   Request permissions

    An acoustically-driven biochip – impact of flow on the cell-association of targeted drug carriers

    C. Fillafer, G. Ratzinger, J. Neumann, Z. Guttenberg, S. Dissauer, I. K. Lichtscheidl, M. Wirth, F. Gabor and M. F. Schneider, Lab Chip, 2009, 9, 2782
    DOI: 10.1039/B906006E

Search articles by author

Spotlight

Advertisements