Issue 18, 2009

Nonviral gene vector formation in monodispersed picolitre incubator for consistent gene delivery

Abstract

A novel picolitre incubator based microfluidic system for consistent nonviral gene carrier formulation is presented. A cationic lipid-based carrier is the most attractive nonviral solution for delivering plasmid DNA, shRNA, or drugs for pharmaceutical research and RNAi applications. The size of the cationic lipid and DNA complex (CL-DNA), or the lipoplex, is one of the important variations for consistency of gene transfection. CL-DNA size, in turn, may be controlled by factors such as the cationic lipid and DNA mixing order, mixing rate, and mixture incubation time. The Picolitre Microfluidic Reactor and Incubator (PMRI) system described here is able to control these parameters in order to create homogeneous CL-DNA. Compared with conventional CL-DNA preparation techniques involving hand-shaking or vortexing, the PMRI system demonstrates a greater ability to constantly and uniformly mix cationic lipids and DNA simultaneously. After mixing in the picolitre droplet reactors, the cationic lipid and DNA is incubated within the picolitre incubator to form CL-DNA. The PMRI generates a narrower size distribution band, while also turning the sample loading, mixing and incubation steps into an integrated process enabling the consistent formation of CL-DNA. The coefficient of variation (CV) of transfection efficiency is 0.05 and 0.30 for PMRI-based and conventional methods, respectively. In addition, this paper demonstrates that the gene transfection efficiency of lipoplex created in the PMRI is more reproducible.

Graphical abstract: Nonviral gene vector formation in monodispersed picolitre incubator for consistent gene delivery

Article information

Article type
Paper
Submitted
07 Jan 2009
Accepted
21 May 2009
First published
24 Jun 2009

Lab Chip, 2009,9, 2638-2643

Nonviral gene vector formation in monodispersed picolitre incubator for consistent gene delivery

A. T. Hsieh, N. Hori, R. Massoudi, P. J. Pan, H. Sasaki, Y. A. Lin and A. P. Lee, Lab Chip, 2009, 9, 2638 DOI: 10.1039/B823191E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements