Issue 16, 2009

A novel permalloy based magnetic single cell micro array

Abstract

Devices capable of automatically aligning cells onto geometrical arrays are of great interest to biomedical researchers. Such devices can facilitate the study of numerous cells while the cells remain physically separated from one another. In this way, cell arrays reduce cell-to-cell interactions while the cells are all subjected to common stimuli, which allows individual cell behaviour to be revealed. The use of arrays allows for the parallel analysis of single cells, facilitates data logging, and opens the door to the use of automated machine-based single cell analysis techniques. A novel permalloy based magnetic single cell micro array (MSCMA) is presented in this paper. The MSCMA creates an array of magnetic traps by generating magnetic flux density peaks at predefined locations. When using cells labelled with immunomagnetic labels, the cells will interact with the magnetic fields, and can be captured at the magnetic trap sites. Prototypes of the MSCMA have been successfully fabricated and tested using both fixed and live Jurkat cells (10 µm average diameter) that were labelled. The prototypes performed as predicted during experimental trials. The experimental results show that the MSCMA can randomly array up to 136 single cells per square mm. The results also show that the number of single cells captured is a function of the trap site density of the MSCMA design and the cell density in the fluid sample.

Graphical abstract: A novel permalloy based magnetic single cell micro array

Article information

Article type
Paper
Submitted
01 Dec 2008
Accepted
09 Apr 2009
First published
27 May 2009

Lab Chip, 2009,9, 2381-2390

A novel permalloy based magnetic single cell micro array

W. Liu, N. Dechev, I. G. Foulds, R. Burke, A. Parameswaran and E. J. Park, Lab Chip, 2009, 9, 2381 DOI: 10.1039/B821044F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements