Issue 29, 2009

On-paper synthesis of Au nanocatalysts from Au(III) complex ions for low-temperature CO oxidation

Abstract

Au nanoparticles (AuNPs) were successfully synthesized in situ on a microstructured paper matrix composed of ceramic fibers as the main framework and ZnO whiskers as a preferential support for AuNPs. The paper-like ceramic fiber/ZnO whisker composites were prepared using a papermaking technique, then soaked in an aqueous solution of the Au(III) complex HAuCl4. AuNPs with size <10 nm were spontaneously formed on the ZnO whiskers in the absence of reducing agents, possibly due to electron transfer from Zn(II) in ZnO whiskers to Au(III) species through Zn–O–Au bonds. As-prepared AuNPs@ZnO whisker-containing paper (AuNPs@ZnO paper) is much like ordinary paper products in being flexible, lightweight and easy to handle. AuNPs@ZnO paper demonstrated excellent catalytic performance in low-temperature CO oxidation. Complete conversion of CO to CO2 was achieved at 20 °C, 140 K lower than the reaction temperature for conventional Au/ZnO catalyst powders. This facile technique has potentially broad wide applications in ‘on-paper’ synthesis of a diverse array of metal NPs. The metal NPs@ZnO paper composites with paper-like flexibility are able to fit various reactor configurations and are thus expected to be promising catalytic materials for improving the practical utility and catalytic performance of these systems, for a wide range of industrial chemical processes.

Graphical abstract: On-paper synthesis of Au nanocatalysts from Au(III) complex ions for low-temperature CO oxidation

Article information

Article type
Paper
Submitted
23 Mar 2009
Accepted
12 May 2009
First published
17 Jun 2009

J. Mater. Chem., 2009,19, 5244-5249

On-paper synthesis of Au nanocatalysts from Au(III) complex ions for low-temperature CO oxidation

H. Koga, T. Kitaoka and H. Wariishi, J. Mater. Chem., 2009, 19, 5244 DOI: 10.1039/B905818D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements