Issue 35, 2009

Dextran Coated Gadolinium Phosphate Nanoparticles for Magnetic Resonance Tumor Imaging

Abstract

Tumor detection is of great clinical interest. It is known that solid tumors have unique vascular pathophysiological features summarized under the term “enhanced permeability and retention (EPR) effect”, which induces the accumulation and prolonged retention of macromolecules from the blood into the tumor. We therefore have designed and synthesized dextran coated paramagnetic gadolinium phosphate nanoparticles (PGP/dextran) as a new magnetic resonance imaging (MRI) contrast agent. The main features of this new material are: (i) characteristics of a positive contrast agent providing higher imaging resolution, (ii) size of several tens of nanometres to accumulate and to be retained into tumors, and (iii) highly biocompatible dextran coating to prevent the rapid elimination from the blood stream. In this article, we describe the results of pharmacokinetic studies, toxicity tests, and MR imaging experiments to visualize tumors using PGP/dextran, and compare them to the clinically used contrast agent Magnevist®. Relying on the EPR effect, tumors in a rabbit were successfully visualized on conventional T1-weighted MR images using the particulate and positive PGP/dextran with only 1/10 of the applied dose compared to Magnevist®. This efficient visualization of a tumor is the result of the comprehensive features of PGP/dextran, having adequate characteristics of a positive contrast agent for MRI, a significantly long plasma half-life and a high biocompatibility. PGP/dextran could be used as a tumor specific contrast agent and as a vehicle to deliver drugs to a tumor.

Graphical abstract: Dextran Coated Gadolinium Phosphate Nanoparticles for Magnetic Resonance Tumor Imaging

Article information

Article type
Paper
Submitted
03 Feb 2009
Accepted
14 May 2009
First published
04 Jun 2009

J. Mater. Chem., 2009,19, 6393-6399

Dextran Coated Gadolinium Phosphate Nanoparticles for Magnetic Resonance Tumor Imaging

H. Hifumi, S. Yamaoka, A. Tanimoto, T. Akatsu, Y. Shindo, A. Honda, D. Citterio, K. Oka, S. Kuribayashi and K. Suzuki, J. Mater. Chem., 2009, 19, 6393 DOI: 10.1039/B902134E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements