Issue 8, 2009

Application of quantum chemistry to nanotechnology: electron and spin transport in molecular devices

Abstract

Rapid progress of nanotechnology requires developing novel theoretical methods to explain complicated experimental results and predict new functions of nanodevices. Thus, for the last decade, one of the challenging works of quantum chemistry is to understand the electron and spin transport phenomena in molecular devices. This critical review provides an extensive survey of on-going research and its current status in molecular electronics with the focus on theoretical applications to diverse types of devices along with a brief introduction of theoretical methods and its practical implementation scheme. The topics cover diverse molecular devices such as molecular wires, rectifiers, field effect transistors, electrical and optical switching devices, nanosensors, spin-valve devices, negative differential resistance devices and inelastic electron tunnelling spectroscopy. The limitations of the presented method and the possible approaches to overcome the limitations are addressed (183 references).

Graphical abstract: Application of quantum chemistry to nanotechnology: electron and spin transport in molecular devices

Article information

Article type
Critical Review
Submitted
11 Nov 2008
First published
15 Apr 2009

Chem. Soc. Rev., 2009,38, 2319-2333

Application of quantum chemistry to nanotechnology: electron and spin transport in molecular devices

W. Y. Kim, Y. C. Choi, S. K. Min, Y. Cho and K. S. Kim, Chem. Soc. Rev., 2009, 38, 2319 DOI: 10.1039/B820003C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements