Issue 46, 2009

An explanation for the charge on water’s surface

Abstract

Measurements with different techniques point to a strong affinity of hydroxide ions for interfaces between water and hydrophobes, but some spectroscopic experiments do not detect excess hydroxide at the interface, while others do. Hydroxide ions are unusual in that they reduce the relative permittivity of an electrolyte solution more than other monovalent, monatomic ions. This implies that they suppress the collective dipole-moment fluctuations of nearby waters. We show that the absence of these fluctuations leads to a Hamaker-like force on the hydroxide ion that attracts it to regions where dipole-moment fluctuations are smaller than in bulk water, in other words, to regions of low relative permittivity. We show also that there is no contradiction between the picture of the basic, negatively charged interface and spectroscopic measurements. This is, in part, because the hydroxides are mostly below the outermost molecular layers. By combining a simple model for this fluctuation force with a modified Poisson–Boltzmann equation, we reproduce the dependence of the ζ-potential on pH, including the low isoelectric point, the approximate magnitude of the experimental surface charge density, and the Jones–Ray data for the dependence of surface tension on electrolyte concentration. We discuss also the apparent contradiction between molecular-dynamics simulations that deny and experiments that support a basic, negatively charged interface.

Graphical abstract: An explanation for the charge on water’s surface

Supplementary files

Additions and corrections

Article information

Article type
Paper
Submitted
24 Dec 2008
Accepted
03 Sep 2009
First published
25 Sep 2009

Phys. Chem. Chem. Phys., 2009,11, 10994-11005

An explanation for the charge on water’s surface

A. Gray-Weale and J. K. Beattie, Phys. Chem. Chem. Phys., 2009, 11, 10994 DOI: 10.1039/B901806A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements