Jump to main content
Jump to site search

Issue 4, 2008
Previous Article Next Article

Flow of wormlike micelles in an expansion-contraction geometry

Author affiliations

Abstract

Recently there has been a great deal of attention, from researchers both in academia and in industry, focused on the rheological properties of solutions of viscoelastic wormlike micelles formed by surfactants. It is particularly vital to understand the properties of these solutions with regard to their flow in porous media, given their application to the recovery of hydrocarbons from subterranean formations. In this study a realistic mesoscopic Brownian dynamics model has been utilized to investigate the flow of viscoelastic surfactant (VES) fluid through individual pores with sizes of around one micron. In particular the influence of micelle size, pore geometry and flow rate on the ability of worms to pass through the pores was studied. The ways in which these parameters influence the conformational properties of the worms and the spatial distribution of micelles inside the simulation cell was also investigated. Despite the observation that the density and length distributions became non-uniform at higher scission energy, the distribution of breaking and fusion events remained spatially uniform.

Graphical abstract: Flow of wormlike micelles in an expansion-contraction geometry

Back to tab navigation

Supplementary files

Publication details

The article was received on 26 Sep 2007, accepted on 04 Feb 2008 and first published on 27 Feb 2008


Article type: Paper
DOI: 10.1039/B713498C
Citation: Soft Matter, 2008,4, 870-879
  •   Request permissions

    Flow of wormlike micelles in an expansion-contraction geometry

    M. R. Stukan, E. S. Boek, J. T. Padding, W. J. Briels and J. P. Crawshaw, Soft Matter, 2008, 4, 870
    DOI: 10.1039/B713498C

Search articles by author

Spotlight

Advertisements