Issue 3, 2008

In vivo and in vitro characterisation of a protoporphyrin IX–cyclic RGD peptide conjugate for use in photodynamic therapy

Abstract

Increasing treatment specificity is one of the major aims of cancer research. Photodynamic therapy is a clinically proven treatment for some cancers and certain other diseases. Photosensitisers generally have little intrinsic selectivity for tumours and any accumulation is dependent upon the type of tumour involved. Increasing tumour selective accumulation could improve the efficacy of PDT and reduce any risk of side effects caused by photosensitiser accumulation in non-target tissue. In order to target photosensitisers to tumours, a cyclic peptide, cRGDfK (arginine-glycine-aspartic acid-phenylalanine-lysine) has been synthesised using solid phase peptide chemistry and conjugated to the porphyrin photosensitiser, protoporphyrin IX. The arginine-glycine-aspartic acid (RGD) motif has been shown to specifically bind αvβ3 integrins, heterodimeric glycoproteins upregulated on the surface of proliferating endothelial cells such as those in tumour neovasculature. This study reports the synthesis, in vitro and in vivo characterisation of this novel compound and compares its properties to the free photosensitiser. The individual components in our system, protoporphyrin IX and cRGDfK retain their respective photodynamic and integrin binding activity following the coupling step and produce a conjugate of high purity. The PpIX:cRGDfK conjugate is shown to be a good photosensitiser in vitro in the integrin positive human SiHa cell line and in vivo in a mouse CaNT tumour model. Moreover, pharmacokinetic analysis of PpIX:cRGDfK treated mice shows significant retention and accumulation of photosensitiser in tumour tissue with higher tumour : normal tissue ratios than the free photosensitiser. However, although the conjugate shows this higher accumulation and improved tumour : non-target tissue ratios, the overall in vivo PDT effect, between dose-light intervals of 0 and 6 h, is not significantly better than for free protoporphyrin IX This is possibly due to differences in the target environment or in the subcellular localisation of the compounds.

Graphical abstract: In vivo and in vitro characterisation of a protoporphyrin IX–cyclic RGD peptide conjugate for use in photodynamic therapy

Article information

Article type
Paper
Submitted
02 Oct 2007
Accepted
22 Nov 2007
First published
18 Dec 2007

Photochem. Photobiol. Sci., 2008,7, 290-298

In vivo and in vitro characterisation of a protoporphyrin IX–cyclic RGD peptide conjugate for use in photodynamic therapy

C. L. Conway, I. Walker, A. Bell, D. J. H. Roberts, S. B. Brown and D. I. Vernon, Photochem. Photobiol. Sci., 2008, 7, 290 DOI: 10.1039/B715141A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements