Issue 1, 2008

Optical micromanipulation

Abstract

Optical micromanipulation has engendered some major studies across all of the natural sciences at the mesoscopic scale. Though over thirty-five years old, the field is finding new applications and has lost none of its dynamic or innovative character: a trapped object presents a system that enables a calibrated minuscule force (piconewtons or less) to be exerted at will, enabling precision displacements right down to the angstrom level to be observed. The study of the motion of single biological molecular motors has been revolutionised and new studies in the physical sciences have been realised. From the chemistry and microfluidic viewpoint, optical forces may remotely actuate micro-components and perform micro-reactions. Overall, optical traps are becoming a key part of a wider “optical toolkit”. We present a tutorial review of this technique, its fundamental principles and a flavour of some of the recent advances made.

Graphical abstract: Optical micromanipulation

Article information

Article type
Tutorial Review
Submitted
22 Aug 2007
First published
07 Nov 2007

Chem. Soc. Rev., 2008,37, 42-55

Optical micromanipulation

K. Dholakia, P. Reece and M. Gu, Chem. Soc. Rev., 2008, 37, 42 DOI: 10.1039/B512471A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements