Jump to main content
Jump to site search

Issue 31, 2008
Previous Article Next Article

Ionic conductivity and activation energy for oxygen ion transport in superlattices—the semicoherent multilayer system YSZ (ZrO2 + 9.5 mol% Y2O3)/Y2O3

Author affiliations

Abstract

The oxygen ion conductivity of YSZ (ZrO2 + 9.5 mol% Y2O3)/Y2O3 multilayer systems is measured parallel to the interfaces as a function of temperature between 350 and 700 °C. The multilayer samples are prepared by pulsed laser deposition (PLD). The film thicknesses, the crystallinity, the texture and the microstructure are investigated by SEM, XRD, HRTEM and SAED. To separate the interface contribution of the total conductivity from the bulk contribution the thickness of the YSZ and Y2O3 layers is varied systematically. The total conductivity of the YSZ films increases when their thickness is decreased from 0.53 μm to 24 nm. It depends linearly on the reciprocal thickness of the individual layers, thus on the number of YSZ/Y2O3 interfaces. This behaviour results from the parallel connection between individual conduction paths in the bulk and the interfacial regions. The activation energy for the ionic conductivity decreases from 1.13 to 0.99 kJ mol−1 by decreasing the thicknesses of the individual YSZ layers. HRTEM studies show that the YSZ/Y2O3 interfaces are semicoherent. The correlation between interface structure and ionic conduction is discussed.

Graphical abstract: Ionic conductivity and activation energy for oxygen ion transport in superlattices—the semicoherent multilayer system YSZ (ZrO2 + 9.5 mol% Y2O3)/Y2O3

Back to tab navigation
Please wait while Download options loads

Publication details

The article was received on 04 Feb 2008, accepted on 02 May 2008 and first published on 20 Jun 2008


Article type: Paper
DOI: 10.1039/B801675E
Citation: Phys. Chem. Chem. Phys., 2008,10, 4623-4635
  •   Request permissions

    Ionic conductivity and activation energy for oxygen ion transport in superlattices—the semicoherent multilayer system YSZ (ZrO2 + 9.5 mol% Y2O3)/Y2O3

    C. Korte, A. Peters, J. Janek, D. Hesse and N. Zakharov, Phys. Chem. Chem. Phys., 2008, 10, 4623
    DOI: 10.1039/B801675E

Search articles by author