Issue 11, 2007

Exploring enzymatic catalysis at a solid surface: a case study with transglutaminase-mediated protein immobilization

Abstract

The factors affecting enzymatic protein immobilization with microbial transglutaminase (MTG) were explored. As model proteins, enhanced green fluorescent protein (EGFP) and glutathione S-transferase (GST) were chosen and tagged with a neutral Gln-donor substrate peptide for MTG (Leu-Leu-Gln-Gly, LLQG-tag) at their C-terminus. To create a specific surface, displaying reactive Lys residues, to be cross-linked with the Gln residue in the LLQG-tag of target proteins by MTG catalysis, a polystyrene surface was physically coated with β-casein. Both recombinant proteins were immobilized onto the β-casein-coated surface only in the presence of active MTG, indicating that those proteins were enzymatically immobilized to the surface. MTG-mediated protein immobilization markedly depends on the pH and ionic strength of the reaction media. The optimal pH range of MTG-mediated immobilization of both recombinant proteins was around 5, at which point the MTG-catalyzed reaction in aqueous solution is not normally preferred. By utilizing a pH-dependent change in EGFP fluorescence, we found that the apparent pH at the surface is likely to be lower than bulk pH, this difference is not attributed to an optimal pH shift in MTG-mediated immobilization. On the other hand, lower yields of protein immobilization at higher ionic strength suggest that electrostatic interaction is a key factor governing MTG catalysis at a solid surface. The results of this study indicate that, in enzymatic catalysis at a solid surface, the concentration of substrates at the surface can enhance the catalytic efficiency, and this could alter the pH dependence of enzymatic catalysis.

Graphical abstract: Exploring enzymatic catalysis at a solid surface: a case study with transglutaminase-mediated protein immobilization

Article information

Article type
Paper
Submitted
01 Feb 2007
Accepted
20 Apr 2007
First published
09 May 2007

Org. Biomol. Chem., 2007,5, 1764-1770

Exploring enzymatic catalysis at a solid surface: a case study with transglutaminase-mediated protein immobilization

Y. Tanaka, Y. Tsuruda, M. Nishi, N. Kamiya and M. Goto, Org. Biomol. Chem., 2007, 5, 1764 DOI: 10.1039/B701595J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements