Jump to main content
Jump to site search

Issue 2, 2007
Previous Article Next Article

Regulating gene expression with light-activated oligonucleotides

Author affiliations

Abstract

Since the development of light-responsive amino acids, the activity of numerous biomolecules has been photomodulated in biochemical, biophysical, and cellular assays. Biological problems of even greater complexity motivate the development of quantitative methods for controlling gene activity with high spatial and temporal resolution, using light as an external trigger. Photoresponsive DNA and RNA oligonucleotides would optimally serve this purpose, but have proven difficult to expand from proofs-of-concept to in vivo experiments. Until recently, the development of this technology was limited by the synthesis of oligonucleotides whose function could be significantly modulated with near-UV light. New synthetic protocols and strategies for both up- and down-regulating gene activity finally make it possible to address biological considerations. In the near future, we can expect photoresponsive DNA and RNA molecules that are relatively non-toxic, nuclease-resistant, and maintain their specificity and activity in vivo. Quantitative, laser-initiated methods for controlling DNA and RNA function will illuminate new areas in cell and developmental biology.

Graphical abstract: Regulating gene expression with light-activated oligonucleotides

Back to tab navigation

Publication details

The article was received on 03 Oct 2006, accepted on 31 Oct 2006 and first published on 20 Nov 2006


Article type: Highlight
DOI: 10.1039/B614349K
Citation: Mol. BioSyst., 2007,3, 100-110
  •   Request permissions

    Regulating gene expression with light-activated oligonucleotides

    X. Tang and I. J. Dmochowski, Mol. BioSyst., 2007, 3, 100
    DOI: 10.1039/B614349K

Search articles by author

Spotlight

Advertisements