Jump to main content
Jump to site search

Issue 11, 2007
Previous Article Next Article

The pressure drop along rectangular microchannels containing bubbles

Author affiliations


This paper derives the difference in pressure between the beginning and the end of a rectangular microchannel through which a flowing liquid (water, with or without surfactant, and mixtures of water and glycerol) carries bubbles that contact all four walls of the channel. It uses an indirect method to derive the pressure in the channel. The pressure drop depends predominantly on the number of bubbles in the channel at both low and high concentrations of surfactant. At intermediate concentrations of surfactant, if the channel contains bubbles (of the same or different lengths), the total, aggregated length of the bubbles in the channel is the dominant contributor to the pressure drop. The difference between these two cases stems from increased flow of liquid through the “gutters”—the regions of the system bounded by the curved body of the bubble and the corners of the channel—in the presence of intermediate concentrations of surfactant. This paper presents a systematic and quantitative investigation of the influence of surfactants on the flow of fluids in microchannels containing bubbles. It derives the contributions to the overall pressure drop from three regions of the channel: (i) the slugs of liquid between the bubbles (and separated from the bubbles), in which liquid flows as though no bubbles were present; (ii) the gutters along the corners of the microchannels; and (iii) the curved caps at the ends of the bubble.

Graphical abstract: The pressure drop along rectangular microchannels containing bubbles

Back to tab navigation

Supplementary files

Publication details

The article was received on 01 May 2007, accepted on 24 Jul 2007 and first published on 22 Aug 2007

Article type: Paper
DOI: 10.1039/B706549C
Citation: Lab Chip, 2007,7, 1479-1489
  •   Request permissions

    The pressure drop along rectangular microchannels containing bubbles

    M. J. Fuerstman, A. Lai, M. E. Thurlow, S. S. Shevkoplyas, H. A. Stone and G. M. Whitesides, Lab Chip, 2007, 7, 1479
    DOI: 10.1039/B706549C

Search articles by author