Issue 25, 2007

Anion photoelectron imaging of deprotonated thymine and cytosine

Abstract

We report the anion photoelectron spectra of deprotonated thymine and cytosine at 3.496 eV photodetachment energy using velocity-mapped imaging. The photoelectron spectra of both species exhibit bands resulting from detachment transitions between the anion ground state and the ground state of the neutral radical. Franck–Condon simulations identify the anion isomers that contribute to the observed photoelectron spectrum. For both thymine and cytosine, the photoelectron spectra are consistent with anions formed by removal of a proton from the N atom that normally attaches to the sugar in the nucleotide (N1). For deprotonated thymine, the photoelectron spectrum shows a band due to a ring breathing vibration excited during the photodetachment transition. The electron affinity for the dehydrogenated thymine radical is determined as 3.250 ± 0.015 eV. For deprotonated cytosine, the photoelectron spectrum lacks any resolved structure and the electron affinity of the dehydrogenated cytosine radical is determined to be 3.037 ± 0.015 eV. By combining the electron affinity with previously measured gas phase acidities of thymine and cytosine, we determine the bond dissociation energy for the N–H bond that is broken.

Graphical abstract: Anion photoelectron imaging of deprotonated thymine and cytosine

Additions and corrections

Article information

Article type
Paper
Submitted
28 Feb 2007
Accepted
05 Apr 2007
First published
03 May 2007

Phys. Chem. Chem. Phys., 2007,9, 3291-3297

Anion photoelectron imaging of deprotonated thymine and cytosine

B. F. Parsons, S. M. Sheehan, T. A. Yen, D. M. Neumark, N. Wehres and R. Weinkauf, Phys. Chem. Chem. Phys., 2007, 9, 3291 DOI: 10.1039/B703045B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements