Issue 1, 2006

Test of a stand-off laser-induced breakdown spectroscopy sensor for the detection of explosive residues on solid surfaces

Abstract

The detection and characterization of energetic materials at distances up to 45 m using stand-off laser induced breakdown spectroscopy (LIBS) has been demonstrated. A field-portable open-path LIB spectrometer working under a coaxial configuration was used. A preliminary study allowed choosing a single-pulse laser source over a double-pulse system as the most suitable source for the stand-off analysis of organic samples. The C2 Swan system, as well as the hydrogen, oxygen and nitrogen emission intensity ratios were the necessary parameters to identify the analyte as an organic explosive, organic non-explosive and non-organic samples. O/N intensity ratios of 2.9 and 2.16 with relative standard deviations of 4.03% and 8.36% were obtained for 2,4-dinitrotoluene and aluminium samples, respectively. A field test with known samples and a blind test were carried out at a distance of 30 m from the sample. Identification of energetic compounds in such conditions resulted in 19 correct results out of 21 samples.

Graphical abstract: Test of a stand-off laser-induced breakdown spectroscopy sensor for the detection of explosive residues on solid surfaces

Article information

Article type
Paper
Submitted
08 Jun 2005
Accepted
19 Oct 2005
First published
09 Nov 2005

J. Anal. At. Spectrom., 2006,21, 55-60

Test of a stand-off laser-induced breakdown spectroscopy sensor for the detection of explosive residues on solid surfaces

C. López-Moreno, S. Palanco, J. Javier Laserna, F. DeLucia Jr, A. W. Miziolek, J. Rose, R. A. Walters and A. I. Whitehouse, J. Anal. At. Spectrom., 2006, 21, 55 DOI: 10.1039/B508055J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements