Issue 23, 2006

Supramolecular ‘flat’ Mn9 grid complexes—towards functional molecular platforms

Abstract

Flat, quantum dot like arrays of closely spaced, electron rich metal centres are seen as attractive subunits for device capability at the molecular level. Mn(II)9 grids, formed by self-assembly processes using ‘tritopic’ pyridine-2,6-dihydrazone ligands, provide easy and pre-programmable routes to such systems, and have been shown to exhibit a number of potentially useful physical properties, which could be utilized to generate bi-stable molecular based states. Their ability to form surface monolayers, which can be mapped by STM techniques, bodes well for their possible integration into nanometer scale electronic components of the future. This report highlights some new Mn(II)9 grids, with functionalized ligand sites, that may provide suitable anchor points to surfaces and also be potential donor sites capable of further grid elaboration. Structures, magnetic properties, electrochemical properties, surface studies on HOPG (highly ordered pyrolytic graphite), including the imaging of individual metal ion sites in the grid using CITS (current imaging tunneling spectroscopy) are discussed, in addition to an analysis of the photophysics of a stable mixed oxidation state [Mn(III)4Mn(II)5] grid. The grid physical properties as a whole are assessed in the light of reasonable approaches to the use of such molecules as nanometer scale devices.

Graphical abstract: Supramolecular ‘flat’ Mn9 grid complexes—towards functional molecular platforms

Supplementary files

Article information

Article type
Paper
Submitted
08 Nov 2005
Accepted
27 Jan 2006
First published
12 May 2006

Dalton Trans., 2006, 2835-2851

Supramolecular ‘flat’ Mn9 grid complexes—towards functional molecular platforms

V. A. Milway, S. M. T. Abedin, V. Niel, T. L. Kelly, L. N. Dawe, S. K. Dey, D. W. Thompson, D. O. Miller, M. S. Alam, P. Müller and L. K. Thompson, Dalton Trans., 2006, 2835 DOI: 10.1039/B515801J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements