Issue 37, 2006

Optical detection of singlet oxygen from single cells

Abstract

The lowest excited electronic state of molecular oxygen, singlet molecular oxygen, O2(a 1Δg), is a reactive species involved in many chemical and biological processes. To better understand the roles played by singlet oxygen in biological systems, particularly at the sub-cellular level, optical tools have been developed to create and directly detect this transient state in time- and spatially-resolved experiments from single cells. Data obtained indicate that, contrary to common perception, this reactive species can be quite long-lived in a cell and, as such, can diffuse over appreciable distances including across the cell membrane into the extracellular environment. On one hand, these results demonstrate that the behavior of singlet oxygen in an intact cell can be significantly different from that inferred from model bulk studies. More generally, these results provide a new perspective for mechanistic studies of intra- and inter-cellular signaling and events that ultimately lead to photo-induced cell death.

Graphical abstract: Optical detection of singlet oxygen from single cells

Article information

Article type
Invited Article
Submitted
26 Jun 2006
Accepted
25 Jul 2006
First published
08 Aug 2006

Phys. Chem. Chem. Phys., 2006,8, 4280-4293

Optical detection of singlet oxygen from single cells

J. W. Snyder, E. Skovsen, J. D. C. Lambert, L. Poulsen and P. R. Ogilby, Phys. Chem. Chem. Phys., 2006, 8, 4280 DOI: 10.1039/B609070M

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements