Issue 16, 2006

Reaction route control by microperoxidase-9/CTAB micelle ratios

Abstract

Microperoxidases (MP) as water-soluble models attract interest to studying the reaction mechanism of peroxidases because these heme peptides are able to form the same enzyme intermediates during the reaction with peroxides. In this work we have demonstrated that the association of Fe(III)MP-9 and Fe(III)MP-11 with CTAB micelles (MP-9/CTAB and MP11/CTAB) provides a microenvironment with an alkaline interface and a hydrophobic core that exhibits peroxidase behavior. This microenvironment shifts positively the redox potential of microperoxidases by ∼100 mV. tert-Butylhydroperoxide (t-BuOOH) when added to the medium, converted Fe(III)MP-9/CTAB to MP-9/CTAB Compound II, a high valence oxidized intermediate of the heme peptide. Subsequent addition of diphenylacetaldehyde (DPAA) to MP-9/CTAB Compound II regenerated the native form of the enzyme, Fe(III)MP-9/CTAB, what characterizes the occurrence of a peroxidase cycle. Fe(III)MP-9/CTAB regenerated during the peroxidase cycle reacted with residual DPAA in the medium to form Fe(II)MP-9/CTAB, which indicates that both Fe(III)MP-9/CTAB and its oxyferryl form can use aldehydes as reducing agents. According to the determined reduction potential, Fe(III)MP-9 and Fe(III)MP-9/CTAB should be able to oxidize DPAA (reduction potential −630 mV). The reaction of MP-9/CTAB with DPAA produced benzophenone as final product, detected by infrared spectroscopy and mass spectrometry. Interestingly, a significant difference was observed in the benzophenone yield according to the micelle/MP-9 molar ratio.

Graphical abstract: Reaction route control by microperoxidase-9/CTAB micelle ratios

Supplementary files

Article information

Article type
Paper
Submitted
03 Feb 2006
Accepted
28 Feb 2006
First published
14 Mar 2006

Phys. Chem. Chem. Phys., 2006,8, 1963-1973

Reaction route control by microperoxidase-9/CTAB micelle ratios

T. Prieto, R. O. Marcon, F. M. Prado, A. C. F. Caires, P. D. Mascio, S. Brochsztain, O. R. Nascimento and I. L. Nantes, Phys. Chem. Chem. Phys., 2006, 8, 1963 DOI: 10.1039/B601671E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements