Issue 24, 2005

The structure of a bioactive calcia–silica sol–gel glass

Abstract

We have used neutron diffraction with isotopic substitution to gain new insights into the nature of the atomic scale calcium environment in bioactive sol–gel glasses, and also used high energy X-ray total diffraction to probe the nature of the processes initiated when bioactive glass is immersed in vitro in simulated body fluid (SBF). Recent work has highlighted the potential of sol–gel derived calcium silicate glasses for the regeneration or replacement of damaged bone tissue. The mechanism of bioactivity and the requirements for optimisation of the properties of these materials are as yet only partially understood but have been strongly linked to calcium dissolution from the glass matrix. The data obtained point to a complex calcium environment in which calcium is loosely bound within the glass network and may therefore be regarded as facile. Complex multi-stage dissolution and mineral growth phases were observed as a function of reaction time between 1 min and 30 days, leading eventually to the formation of a disordered hydroxyapatite (HA) layer on the glass surface, which is similar to the polycrystalline bone mineral hydroxyapatite. This methodology provides insight into the structure of key sites in these materials and key stages involved in their reactions, and thereby more generally into the behaviour of bone-regenerative materials that may facilitate improvements in tissue engineering applications.

Graphical abstract: The structure of a bioactive calcia–silica sol–gel glass

Article information

Article type
Paper
Submitted
28 Jan 2005
Accepted
19 Apr 2005
First published
29 Apr 2005

J. Mater. Chem., 2005,15, 2369-2374

The structure of a bioactive calcia–silica sol–gel glass

L. J. Skipper, F. E. Sowrey, D. M. Pickup, K. O. Drake, M. E. Smith, P. Saravanapavan, L. L. Hench and R. J. Newport, J. Mater. Chem., 2005, 15, 2369 DOI: 10.1039/B501496D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements