Issue 10, 2005

The synthesis and characterisation of 4,1,2-MC2B10 metallacarboranes

Abstract

Reduction of the tethered carborane 1,2-(CH2)3-1,2-closo-C2B10H10 followed by treatment with CoCl2/NaCp, [(p-cymene)RuCl2]2 (p-cymene = C6H4MeiPr-1,4), (PMe2Ph)2PtCl2 or (dppe)NiCl2 (dppe = Ph2PCH2CH2PPh2) affords reasonable yields of the new 13-vertex metallacarboranes 1,2-(CH2)3-4-Cp-4,1,2-closo-CoC2B10H10 (1), 1,2-(CH2)3-4-(p-cymene)-4,1,2-closo-RuC2B10H10 (2), 1,2-(CH2)3-4,4-(PMe2Ph)2-4,1,2-closo-PtC2B10H10 (3) and 1,2-(CH2)3-4,4-(dppe)-4,1,2-closo-NiC2B10H10 (4), respectively. All compounds were characterised spectroscopically and crystallographically. The cobalt and ruthenium species 1 and 2 have Cs symmetry in both solution and the solid state, having henicosahedral cage structures featuring a trapezoidal C1C2B9B5 face. The platinum and nickel compounds 3 and 4 have asymmetric docosahedral cage structures in the crystal (the more so for 4 than for 3) although both appear, by 11B and 31P NMR spectroscopy, to have Cs symmetry in solution. Low-temperature experiments on the more soluble platinacarborane could not freeze out the diamond–trapezium–diamond fluctional process that we assume is operating in solution, and we therefore conclude that this process has a relatively low activation barrier, probably <35 kJ mol−1.

Graphical abstract: The synthesis and characterisation of 4,1,2-MC2B10 metallacarboranes

Supplementary files

Article information

Article type
Paper
Submitted
04 Mar 2005
Accepted
22 Mar 2005
First published
14 Apr 2005

Dalton Trans., 2005, 1842-1846

The synthesis and characterisation of 4,1,2-MC2B10 metallacarboranes

R. McIntosh, D. Ellis, J. Gil-Lostes, K. J. Dalby, G. M. Rosair and A. J. Welch, Dalton Trans., 2005, 1842 DOI: 10.1039/B503214H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements