Issue 12, 2005

Rate coefficients for the OH + CFH2CH2OH reaction between 238 and 355 K

Abstract

The rate coefficient for the reaction OH + CFH2CH2OH → products (k1) between 238 and 355 K was measured using the pulsed laser photolysis-laser induced fluorescence (PLP-LIF) technique to be (5.15 ± 0.88) × 10−12 exp[−(330 ± 45)/T] cm3 molecule−1 s−1; k1(298 K) = 1.70 × 10−12 cm3 molecule−1 s−1. The quoted uncertainties are 2σ (95% confidence level) and include estimated systematic errors. The present results are discussed in relation to the measured rate coefficients for the reaction of OH with other fluorinated alcohols and those calculated using recently reported structure additivity relationships for fluorinated compounds (K. Tokuhashi, H. Nagai, A. Takahashi, M. Kaise, S. Kondo, A. Sekiya, M. Takahashi, Y. Gotoh and A. Suga, J. Phys. Chem. A, 1999, 103, 2664–2672, ). Infrared absorption cross sections for CFH2CH2OH are reported and they are used to calculate the global warming potentials (GWP) for CFH2CH2OH of ∼8, ∼2, and ∼1, respectively, for the 20, 100 and 500 year horizons. A brief discussion of the atmospheric degradation of CFH2CH2OH is provided. It is concluded that CFH2CH2OH is an acceptable substitute for CFCs in terms of its impact on Earth’s climate and the composition of the atmosphere. The room temperature rate coefficient for the reaction OH + CH3CH2OH → products (k10) was measured to be 3.26 × 10−12 cm3 molecule−1 s−1, in good agreement with recent measurements from this laboratory.

Graphical abstract: Rate coefficients for the OH + CFH2CH2OH reaction between 238 and 355 K

Supplementary files

Article information

Article type
Paper
Submitted
07 Mar 2005
Accepted
16 May 2005
First published
24 May 2005

Phys. Chem. Chem. Phys., 2005,7, 2498-2505

Rate coefficients for the OH + CFH2CH2OH reaction between 238 and 355 K

B. Rajakumar, J. B. Burkholder, R. W. Portmann and A. R. Ravishankara, Phys. Chem. Chem. Phys., 2005, 7, 2498 DOI: 10.1039/B503332B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements