Issue 8, 2004

Preparation and antiviral properties of new acyclic, achiral nucleoside analogues: 1- or 9-[3-hydroxy-2-(hydroxymethyl)prop-1-enyl]nucleobases and 1- or 9-[2,3-dihydroxy-2-(hydroxymethyl)propyl]nucleobases

Abstract

Acyclic, achiral nucleoside derivatives 1b–e of adenine, cytosine, 5-methylcytosine, and guanine, containing a 3-hydroxy-2-(hydroxymethyl)prop-1-enyl group on N-1 or N-9, have been prepared analogously to the previously described thymine derivative 1a. In contrast to the adenine and guanine derivatives, the cytosine derivative 9 was unstable, and was obtained in a low yield due to side reactions. These include cleavage of the propenyl group from the base, and the formation of a bicyclic compound. The thymine derivative, although stable under neutral conditions, likewise underwent a reversible cyclization reaction (Michael addition) in the presence of acids or bases. The 5-methylcytosine derivative was stable under neutral and basic conditions. Four other nucleoside derivatives 26a–d containing a 2,3-dihydroxy-2-(hydroxymethyl)propyl group on N-1 or N-9, three of which are new, have likewise been prepared. All compounds were evaluated as antiviral agents against HIV-1 and HSV-1 but were devoid of antiviral activity.

Graphical abstract: Preparation and antiviral properties of new acyclic, achiral nucleoside analogues: 1- or 9-[3-hydroxy-2-(hydroxymethyl)prop-1-enyl]nucleobases and 1- or 9-[2,3-dihydroxy-2-(hydroxymethyl)propyl]nucleobases

Article information

Article type
Paper
Submitted
16 Dec 2003
Accepted
23 Feb 2004
First published
16 Mar 2004

Org. Biomol. Chem., 2004,2, 1245-1254

Preparation and antiviral properties of new acyclic, achiral nucleoside analogues: 1- or 9-[3-hydroxy-2-(hydroxymethyl)prop-1-enyl]nucleobases and 1- or 9-[2,3-dihydroxy-2-(hydroxymethyl)propyl]nucleobases

T. Boesen, C. Madsen, D. Sejer Pedersen, B. M. Nielsen, A. B. Petersen, M. Å. Petersen, M. Munck, U. Henriksen, C. Nielsen and O. Dahl, Org. Biomol. Chem., 2004, 2, 1245 DOI: 10.1039/B316304K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements