Issue 2, 2004

Application of strontium isotope abundance ratios measured by MC-ICP-MS for food authentication

Abstract

Naturally occurring isotopes of such elements as strontium (Sr) have proved to be good tools for detecting trends in the soil-vegetation system and the tracing of a variety of objects. Multiple-collector inductively coupled plasma mass spectrometry (MC-ICP-MS) has been used for the precise determination of variations in the isotopic composition of Sr. The method described has been applied to the establishment of the potential and limits to determine the geographical origins of different Emmental-type cheese samples. The sample preparation consists of (i) a freeze-drying procedure to remove water, (ii) an extraction step to eliminate the fat components and to obtain the cheese casein fraction, (iii) a thermal decomposition of the latter, and (iv) a chromatographic matrix separation of the redissolved residue. The determination of the isotope abundance ratios 88Sr/86Sr, 87Sr/86Sr and 84Sr/86Sr resulted in precisions of 0.002–0.01%. Simultaneously, the ion currents for krypton (83Kr, 82Kr) and rubidium (85Rb) were measured to correct for interferences with the Sr isotopes 84, 86 and 87. These and further (argide) spectral interferences causing bias effects to the Sr isotope abundance ratios have been investigated and an adequate computational correction procedure has been assessed. The whole set of validation data has been used for the calculation of the combined standard measurement uncertainty of the isotopic abundance ratio, resulting in a value of 0.016%. Comparison of the measured 87Sr/86Sr data with thermal ionisation mass spectrometric (TIMS) results, determined on the same cheese samples, agreed within the stated measurement uncertainties, thus indicating that both the validation of the sample preparation procedures and the mass spectrometric measurements cause no evident bias effect with respect to the Sr isotope abundance values. The 87Sr/86Sr isotope abundance ratios in cheese originating from different regions (alpine, pre-alpine, Bretagne, Finland, Canada, Australia) accorded to local geological properties. No difference was found between “casein-bound” and “whole-cheese” Sr isotope abundance ratios within the stated measurement uncertainties.

Article information

Article type
Paper
Submitted
19 Jun 2003
Accepted
28 Oct 2003
First published
01 Dec 2003

J. Anal. At. Spectrom., 2004,19, 227-234

Application of strontium isotope abundance ratios measured by MC-ICP-MS for food authentication

G. Fortunato, K. Mumic, S. Wunderli, L. Pillonel, J. O. Bosset and G. Gremaud, J. Anal. At. Spectrom., 2004, 19, 227 DOI: 10.1039/B307068A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements