Jump to main content
Jump to site search

Volume 125, 2004
Previous Article Next Article

Shape control of III–V semiconductor nanocrystals: Synthesis and properties of InAs quantum rods

Author affiliations


A novel approach for synthesis of soluble semiconductor quantum rods using metal nanoparticles to direct and catalyze one-dimensional growth is developed. The method is useful in particular for III–V semiconductors with cubic lattice, where the utilization of surfactant-controlled rod-growth is not easily realized. The growth takes place via the solution–liquid–solid (SLS) mechanism where proper precursors are injected into a coordinating solvent. Centrifugation is used for separation of rod-fractions with different lengths. The reaction is demonstrated for InAs, InP and GaAs. Focusing on InAs rods as a model system, we examined the effects of the type of metal catalyst, and the tuning of reaction conditions with respect to temperature, concentration, catalyst content and reaction time. Within the three types of metal catalysts used—Au, Ag and In, Au was found to provide the best control for achieving rod-growth even though the melting point of bulk gold is significantly higher then the reaction temperature. The structural properties of the rods were characterized by transmission electron microscopy, X-ray diffraction and energy dispersive X-ray spectroscopy. Rods have a cubic lattice and grow mainly along the [111] direction. The relative gold content decreases in shorter rods suggesting Au depletion as a cause for limiting the growth. Room and low temperature absorption and photoluminescence measurements show that the band-gap shifts to the red upon increasing rod length revealing strong quantum confinement along the long axis in InAs rods, providing spectral coverage of the near-IR range relevant for telecommunication applications. Emission intensity also decreases with increased rod-length. These length dependent properties manifest the transition from 0D to 1D quantum confined systems.

Back to tab navigation

Publication details

The article was received on 13 Mar 2003, accepted on 27 May 2003 and first published on 02 Sep 2003

Article type: Paper
DOI: 10.1039/B302898D
Citation: Faraday Discuss., 2004,125, 23-38
  •   Request permissions

    Shape control of III–V semiconductor nanocrystals: Synthesis and properties of InAs quantum rods

    S. Kan, A. Aharoni, T. Mokari and U. Banin, Faraday Discuss., 2004, 125, 23
    DOI: 10.1039/B302898D

Search articles by author