Issue 11, 2004

Arrays of horizontally-oriented mini-reservoirs generate steady microfluidic flows for continuous perfusion cell culture and gradient generation

Abstract

This paper describes the use of arrays of horizontally-oriented reservoirs to deliver liquids through microchannels at a constant flow rate over extended periods of time (hours to days). The horizontal orientation maintains a constant hydraulic pressure drop across microfluidic channels even as the volumes of liquids within the reservoirs change over time. For a given channel–reservoir system, the magnitude of the flow velocity depends linearly on the height difference between reservoirs. The simple structure and operation mechanism make this pumping system versatile. A one-inlet–one-outlet system was used to continuously deliver media for perfusion cell culture, and an array of inlet reservoirs coupled to an outlet reservoir via microchannels was used to drive flows of multiple laminar streams. The parallel pumping scheme conveniently generated various smooth and step concentration gradients, and allowed evaluation of the effect of colchicine on myoblasts. Since the reservoir arrays are configured to be compatible with commercialized multichannel pipettors designed for 96 well plate handling, this simple pumping scheme is envisioned to be broadly useful for medium to high throughput microfluidic perfusion cell culture assays, cell migration assays, multiple laminar flow drug tests, and any other applications needing multiple microfluidic streams.

Article information

Article type
Paper
Submitted
15 Apr 2004
Accepted
15 Jul 2004
First published
11 Aug 2004

Analyst, 2004,129, 1026-1031

Arrays of horizontally-oriented mini-reservoirs generate steady microfluidic flows for continuous perfusion cell culture and gradient generation

X. Zhu, L. Yi Chu, B. Chueh, M. Shen, B. Hazarika, N. Phadke and S. Takayama, Analyst, 2004, 129, 1026 DOI: 10.1039/B407623K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements