Issue 14, 2003

The electronic spectroscopy of transition metal di-hydrides H2M(CO)4 (M = Fe,Os): a theoretical study based on CASSCF/MS-CASPT2 and TD-DFT

Abstract

Transition energies to the low-lying singlet electronic excited states of H2M(CO)4 (M = Fe,Os) are calculated at the CASSCF/MS-CASPT2 level of theory using relativistic effective core potentials in the ab initio model potential (AIMP) approach. The main features of the absorption spectra of both molecules differ significantly. The spectrum of H2Fe(CO)4 is dominated by low-lying excited states corresponding mainly to 3dFe → σ*u and 3dFe → σ*g excitations calculated between 39 310 cm−1 (4.9 eV) and 43 210 cm−1 (5.4 eV). These allowed transitions contribute to the shoulder observed in the experimental spectrum around 270 nm (37 040 cm−1) and are responsible for the photoreactivity of H2Fe(CO)4 at 254 nm (39 370 cm−1). In contrast the lowest part of the absorption spectrum of the osmium analog H2Os(CO)4 is characterized by a high density of metal–ligand-charge-transfer (MLCT) states between 47 220 cm−1 (5.9 eV) and 52 430 cm−1 (6.55 eV) and corresponding to 5dOs → π*CO excitations. The transitions corresponding to 5dOs → σ*u and 5dOs → σ*g excitations are displaced to the upper part of the absorption spectrum of H2Os(CO)4 (beyond 60 000 cm−1 or 166 nm) and cannot induce H2 elimination under irradiation at 254 nm like in the iron complex. A series of sigma-bond–ligand-charge-transfer (SBLCT) states corresponding to σg → π*CO and σu → π*CO excitations not present in H2Fe(CO)4 is found exclusively in the spectrum of H2Os(CO)4 beyond 55 000 cm−1. The upper part of the spectrum of H2Fe(CO)4 (below 220 nm) is assigned to intense MLCT transitions corresponding to 3dFe → π*CO excitations. The MS-CASPT2 and TD-DFT methods agree qualitatively as far as the assignment and transition energies of the low-lying states are concerned in both molecules whereas a comparison of the calculated oscillator strengths is more problematic. The transitions are generally underestimated at the TD-DFT level, an effect that is even more pronounced for the charge transfer excitations to the carbonyl ligands. The high density of singlet electronic states in these simple transition metal hydrides carbonyls illustrates the complexity of the electronic spectroscopy in this class of molecules. This explains the poor resolution of these overcrowded spectra and the difficulty in understanding the photoreactivity of these molecules.

Article information

Article type
Paper
Submitted
25 Mar 2003
Accepted
02 Jun 2003
First published
18 Jun 2003

Phys. Chem. Chem. Phys., 2003,5, 2948-2953

The electronic spectroscopy of transition metal di-hydrides H2M(CO)4 (M = Fe,Os): a theoretical study based on CASSCF/MS-CASPT2 and TD-DFT

V. Vallet, J. Bossert, A. Strich and C. Daniel, Phys. Chem. Chem. Phys., 2003, 5, 2948 DOI: 10.1039/B303239F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements