Issue 3, 2002

Generation of concentration gradient by controlled flow distribution and diffusive mixing in a microfluidic chip

Abstract

We have developed a simple method to generate a concentration gradient in a microfluidic device. This method is based on the combination of controlled fluid distribution at each intersection of a microfluidic network by liquid pressure and subsequent diffusion between laminas in the downstream microchannel. A fluid dynamic model taking into account the diffusion coefficient was established to simulate the on-chip flow distribution and diffusion. Concentration gradients along a distance of a few hundred micrometers were generated in a series of microchannels. The gradients could be varied by carefully regulating the liquid pressure applied to the sample injection vials. The observed concentration gradients of fluorescent dyes generated on the microfluidic channel are consistent with the theoretically predicted results. The microfluidic design described in this study may provide a new tool for applications based on concentration gradients, including many biological and chemical analyses such as cellular reaction monitoring and drug screening.

Article information

Article type
Paper
Submitted
29 Jan 2002
Accepted
22 Apr 2002
First published
14 May 2002

Lab Chip, 2002,2, 158-163

Generation of concentration gradient by controlled flow distribution and diffusive mixing in a microfluidic chip

M. Yang, J. Yang, C. Li and J. Zhao, Lab Chip, 2002, 2, 158 DOI: 10.1039/B201021F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements