Issue 19, 2002

Competition between alkyl radical addition to carbonyl bonds and H-atom abstraction reactions

Abstract

The activation energies for the methyl radical addition to CH2O, CH3CHO, and (CH3)2CO, are small and around 28, 29, and 40 kJ mol−1, respectively. For the addition of primary alkyl radicals to formaldehyde and higher aldehyde homologues, we find significantly lower activation barriers of (20 ± 4) kJ mol−1 and (27 ± 2) kJ mol−1, respectively. An almost negligible activation barrier of about 5 kJ mol−1 was found for the secondary radical addition to formaldehyde. In the case of addition of a tertiary radical to formaldehyde no activation barrier could be identified. Generally, methyl addition reactions to carbonyls will compete with hydrogen abstraction reactions. For larger alkyl radicals addition to carbonyls dominates over the direct H-atom abstraction. A self-consistent set of standard enthalpies of formation ΔfH° for saturated alkoxy (CnH2n+1O˙, where n ⩽ 5) radicals was obtained by the modified Gaussian-3 (G3(MP2)//B3LYP) ab initio molecular orbital theory. The calculated heats of formations are in good agreement with literature values estimated from O–H bond dissociation energies. The expected maximum error of the calculated ΔfH° is less than 4 kJ mol−1. The primary, secondary, and tertiary alkoxy group values (GV) were evaluated from the ab initio ΔfH°-s with a standard deviation of 1.2 kJ mol−1.

Article information

Article type
Paper
Submitted
21 Feb 2002
Accepted
05 Aug 2002
First published
04 Sep 2002

Phys. Chem. Chem. Phys., 2002,4, 4663-4668

Competition between alkyl radical addition to carbonyl bonds and H-atom abstraction reactions

H. Hippler and B. Viskolcz, Phys. Chem. Chem. Phys., 2002, 4, 4663 DOI: 10.1039/B201883G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements