Jump to main content
Jump to site search

Issue 11, 2002
Previous Article Next Article

Capillary condensation in heterogeneous mesoporous networks consisting of variable connectivity and pore-size correlation

Author affiliations

Abstract

Heterogeneous three-dimensional mesoporous networks (A. J. Ramírez-Cuesta, S. Cordero, F. Rojas, R. J. Faccio and J. L. Riccardo, J. Porous Mater., 2001, 8, 61, ) constructed under the premises of the dual site–bond model have been used as probe substrates to study the effects of variable connectivity and pore-size correlation on the aspects of both hysteresis loops and primary sorption scanning curves. The shapes of the hysteresis loops obtained from sorption simulation in networks of diverse morphologies are compared and discussed. It is found that the precursor structural parameters of the Monte Carlo simulated networks together with the sorption algorithm used in this work, can lead to IUPAC types H1, H2 and H3-like hysteresis loops, depending on the values chosen for the pore-size distribution parameters and mean connectivity. Network morphology also influences greatly the mechanisms of sorption processes in poorly or highly size correlated porous substrates. Sorption results on these 3-D porous specimens help to visualize the extents of pore blocking (vapour percolation) and delayed adsorption (liquid percolation) phenomena and also to foresee the most appropriate methods to ascertain the structure of porous materials.

Back to tab navigation
Please wait while Download options loads

Publication details

The article was received on 27 Sep 2001, accepted on 18 Mar 2002, published on 30 Apr 2002 and first published online on 30 Apr 2002


Article type: Paper
DOI: 10.1039/B108785A
Citation: Phys. Chem. Chem. Phys., 2002,4, 2346-2355
  •   Request permissions

    Capillary condensation in heterogeneous mesoporous networks consisting of variable connectivity and pore-size correlation

    F. Rojas, I. Kornhauser, C. Felipe, J. M. Esparza, S. Cordero, A. Domínguez and J. L. Riccardo, Phys. Chem. Chem. Phys., 2002, 4, 2346
    DOI: 10.1039/B108785A

Search articles by author